Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis.

نویسندگان

  • D Praticò
  • K Uryu
  • S Leight
  • J Q Trojanoswki
  • V M Lee
چکیده

Oxidative stress is a key feature in the Alzheimer's disease (AD) brain and manifests as lipid peroxidation (LPO). Isoprostanes (iPs) are specific and sensitive markers of in vivo LPO. To determine whether amyloid beta (Abeta) deposition in vivo is associated with increased LPO, we examined iP levels in a transgenic mouse model (Tg2576) of AD amyloidosis. Urine, plasma, and brain tissues were collected from Tg2576 and littermate wild-type (WT) animals at different time points starting at 4 months of age and continuing until 18 months of age. Levels of urinary 8,12-iso-iPF(2alpha)-VI were higher in Tg2576 than in WT animals as early as 8 months of age and remained this high for the rest of the study. A similar pattern was observed for plasma levels of 8,12-iso-iPF(2alpha)-VI. Homogenates from the cerebral cortex and hippocampus of Tg2576 mice had higher levels of 8,12-iso-iPF(2alpha)-VI than those from WT mice starting at 8 months of age. In contrast, a surge of Abeta 1-40 and 1-42 levels as well as Abeta deposits in Tg2576 mouse brains occurred later, at 12 months of age. A direct correlation was observed between brain 8,12-iso-iPF(2alpha)-VI and Abeta 1-40 and 1-42. Because LPO precedes amyloid plaque formation in Tg2576 mice, this suggests that brain oxidative damage contributes to AD pathogenesis before Abeta accumulation in the AD brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats

Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...

متن کامل

Thymoquinone recovers learning function in a rat model of Alzheimer’s disease

Objective: Alzheimer's disease is a neurodegenerative disorder characterized by accumulation of amyloid beta in the hippocampus. In recent decades, herbal medicine has been widely used to treat many neurodegenerative disorders,as in comparison to conventional drugs, herbal remedies exert minimal side effects. Here, the effects of thymoquinone, as the main active component of Nigella sativa, on ...

متن کامل

Cytosolic proteins lose solubility as amyloid deposits in a transgenic mouse model of Alzheimer-type amyloidosis.

The extracellular accumulation of β-amyloid peptide is a key trigger in the pathogenesis of Alzheimer's disease (AD). In humans, amyloid deposition precedes the appearance of intracellular inclusion pathology formed by cytosolic proteins such as Tau, α-synuclein and TDP-43. These secondary pathologies have not been observed in mice that model Alzheimer-type amyloidosis by expressing mutant amyl...

متن کامل

Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria

OBJECTIVE Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. METHODS We adopted a human chon...

متن کامل

Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis.

Extracellular deposition of amyloid fibrils is responsible for the pathology in the systemic amyloidoses and probably also in Alzheimer disease [Haass, C. & Selkoe, D. J. (1993) Cell 75, 1039-1042] and type II diabetes mellitus [Lorenzo, A., Razzaboni, B., Weir, G. C. & Yankner, B. A. (1994) Nature (London) 368, 756-760]. The fibrils themselves are relatively resistant to proteolysis in vitro b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2001